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INTRODUCTION 

Combined heat and mass transfer driven by buoyancy, 
due to temperature and concentration variations is of prac- 
tical importance, since there are many possible engineering 
applications, such as the migration of moisture through the 
air contained in fibrous insulations and grain storage instal- 
lations, and the dispersion of chemical contaminants through 
water-saturated soil. A comprehensive review on the 
phenomena has been recently provided by Trevisan and 
Bejan [1]. 

Bejan and Khair 12] treated one of the most fundamental 
cases, namely buoyancy-induced heat and mass transfer from 
a vertical plate embedded in a saturated porous medium. A 
scale analysis originally suggested by Bejan [3] was intro- 
duced to identify four possible regimes depending on the 
values of buoyancy ratio and Lewis number, and the numeri- 
cal solutions to the boundary layer equations were obtained 
for a limited range of the buoyancy ratio. 

In this note, we slhall revisit the same physical model as 
Bejan and Khair, and then extend it to the case of arbitrary 
shape. Highly accurate heat transfer and mass transfer for- 
mulae, which cover all ranges of the buoyancy ratio and 
Lewis number, are obtained by exploiting a simple integral 
treatment along the lines of Nakayama and Koyama [4]. 
All possible physical limiting conditions are examined to 
construct two distinct regime maps for heat transfer and 
mass transfer, respectively, which subsequently lead to an 
interesting paradox overlooked in the previous scale analy- 
ses, namely that the pure heat transfer formula may hold 
even when the flow close to the wall is driven by mass transfer, 
whereas the pure mass transfer formula may hold even when 
the flow close to the wall is driven by heat transfer. 

ANALYSIS 

Consider a vertic~d flat plate embedded in a saturated 
porous medium (see Fig. 1). The surface of the plate is 
maintained at a constant temperature Tw, higher than its 
ambient temperature. Te, and at the same time the con- 
centration of a certain chemical species decreases from Cw at 
the wall to Co sufficiently away from the wall. Under the usual 
boundary layer approximations, the continuity equation, the 
Boussinesq approxin'tated Darcy's law, the heat and mass 
transfer equations arc: given by 

OU ~v 
Ox+~yy=O (1) 

1l 
~u  = pg~(T-  Te) -}- pgflc(C- Ce) (2) 

OT c~T d2T 
U~x +V~y = C t - -  (3) 8y 2 

and 

3C OC ~2C 
+ v : -  = o - -  (4 )  

vy c~y z 

where u, v, T and C are the volume-averaged velocity com- 
ponents, temperature and concentration, respectively./~ and 
p are the solution density and viscosity, Kis the permeability 
of the porous medium, and g is the gravitational acceleration. 
Furthermore, ~ and D are the equivalent thermal and mass 
diffusivity of the saturated porous medium, respectively, 

Tw, Cw 

Fig. 1. Physical model and its boundary layer coordinate 
system. 
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NOMENCLATURE 

A, A~ shape factors, defined in equation (10a) and 
(lOb) 

C concentration 
D equivalent mass diffusivity of the fluid- 

saturated porous medium 
E shape factor, defined in equation (lOc) 
g acceleration due to gravity 
K intrinsic permeability of the porous media 
Le Lewis number  
N buoyancy ratio, defined in equation (11) 
Nu~ local Nusselt number  
Rax local Rayleigh number  
Sh~ local Sherwood number  
T temperature 
u, v Darcian or superficial velocity components 
x, y boundary layer coordinates. 

Greek symbols 
c~ equivalent thermal diffusivity of the fluid- 

saturated porous medium 
fl coefficient of thermal expansion 
fl~ coefficient of concentration expansion 
6 arbitrary length scale for thermal boundary 

layer 
boundary layer thickness ratio, defined in 
equation (10d) 

/2 fluid viscosity 
p fluid density. 

Subscripts 
e ambient 
w wall. 

whereas fl and tic are the thermal expansion and con- 
centration expansion coefficients, respectively. The boundary 
conditions for the velocity, temperature and concentration 
are 

y = 0 :  v = 0  T = T ~  C=C~, (5a) 

y = o o :  u = 0  T=T~ C=C~. (5b) 

The energy equation (3) and the constituent conservation 
equation (4) can be integrated together with the continuity 
equation (1), using the boundary conditions given by equa- 
tions (5) as 

d f o  __ OT dx u (T -  T,)dy = OY y=0 (6) 

d fo ° _D~C dx u(C-  C~) dy = Oy r= 0' (7) 

Substituting the Darcy's law given by equation (2) into the 
foregoing integral equations, and assuming that  the tem- 
perature and concentration profiles are similar, we transform 
equations (6) and (7) into 

A pKgfl(T. -- T¢) d6 E 
/~ dx = ~ (8) 

A¢ pKgfl(Tw - Te) d6 E 
/~ ~lx = De ~ (9) 

where 

and 

A = f o / T - T ~  . C-C~'~ T--T, ,[y'~ 
~T~-T~ +IVC~-C~)T~-T~a~5)  (lOa) 

A c = f ~ { T - T ¢  _ C - C ~ \ C - G  .{y'~ (lOb) 

OT 
E-  T~-L~,=o  (10c) 

~C 

Tw-To ~ ,=o  
C~ -- C~ dT (10d) 

and 
y =  0 

5 is an arbitrary scale for the thermal boundary thickness, 
whereas ~ is its ratio to the concentration boundary layer 

thickness. N is the buoyancy ratio defined as 

flo(cw-co) 
N =  (11) 

fl(Tw -- Te) 

such that N = 0 for thermal-driven flow and infinite for mass- 
driven flow. 

We assume exponential temperature and concentration 
profiles as follows : 

T-To = exp ( _ y )  (12a) 
T~-T~ 

and 

C-Co 
Cw-Co 

such that 

A 

Y) (12b) - -  = exp - ~  

1 + ( + 2 N  2i f+(1  + O N  
2 ( 1 + 0  A¢ = -  2 ~ ( 1 + 0  and E =  1 

( 13 a-c) 

Substituting these shape factors into equations (8) and (9), 
we integrate the equations to obtain two distinct expressions 
for 62 as 

4 ( 1 + 0  4(2(1 + ( )  
(5/x) 2 Rax -- 1 + 2 N + ~  - {N+(2+N)(}Le (14) 

where Rax = pKgfl(Tw- Te)x/a# is the local Rayleigh num- 
ber and Le = ~/D is the Lewis number. The foregoing two 
expressions for (6/x) z Ra~ can be combined to give the fol- 
lowing cubic algebraic equation for determining the bound- 
ary layer thickness ratio ff as 

(3 + (1 +2N)~ 2 - {(2+N)Le}~-NLe = 0. (15) 

As ¢ is determined from the foregoing equation, the local 
Nusselt number  and Sherwood number  of our primary 
interest are given by 

x O _yTy=0 x 0 5 (1 + 2 N + ( ~ ' / z  
Nux Tw--~ = 5 = " \ - ~ - - ]  Ra]/Z 

(16) 

x aC x 



Technical Notes 763 

~1 + 2N-I-~) 1/2 
= 0.St: \ ~ )  Ra~ '2 

= 0-5 !-N+-(2 + N)¢~l/z Le'/2Ra~/2. (17) 
( 1+¢ j 

The accuracy acquired in the foregoing approximate 
expressions may be examined by comparing the approximate 
heat and mass transfer results against the exact solution [5] 
for the two limiting cases of pure thermal-driven flow (i.e. 
N = 0) and pure mass-driven flow (i.e. N --, oo), as follows : 

NUx ] _ =  '0.500:approximate 
Ra~/2 [iv=0 (RaxLeN) '/~ u ~  (0.444: exact 

(18) 

Our approximate expressions given by equations (16) and 
(17) tend to overestimate heat and mass transfer rates under 
these physical limiting conditions. It is not unusual to have 
an error of 10% or more, depending on the assumed profile. 
(Note that, if a linear profile [4] is used instead, we would 
have underestimated the transfer rates.) However, the situ- 
ation can be remedied by adjusting the multiplicative 
constant, namely, replacing 0.5 by 0.444. Thus, we propose 
the following final approximate formulae : 

0 444 (1 +2N-F~ uz Nu~ = . k - - ' ~  ] Rax '2 (19a) 

and 

1 + 2 N + ~ ]  I/2 
Shx = 0.444~ \ ~ / I  Rail2 (19b) 

where the boundary layer thickness ratio ( is given by equa- 
tion (15). Following Merkin [6] and Nakayama and Koyama 
[4], the above results may be translated to the general case 
of  arbitrary shape (see ref. [4] for the details). The generalized 
expressions run as 

and 

where 

and 

0 4,14 {1 + 2 N + ~ y / z  U u , = .  \ - ~ )  (Raxll) 112 (20a) 

/1 + 2 N + ~  I/2 
Sh~ = 0.444~ ~ - ~ )  (RaJI) '/2 (208) 

I (x) = r 2 sin q~ dx/(xrZsin ~b) 

l1 : plane body 

r(x) = I f~ cos q~ dx : axisymmetric body. 

(20c) 

(20d) 

The generalized coordinate x measures the distance around 
the body surface from the lower stagnation point, whereas 
q~(x) is the angle between the outward normal to the body 
and the downward vertical, such that the local Rayleigh 
number is defined as Rax = pKgsindpfl(Tw-Te)x/ct#. The 
functions I(x) for various geometries may be found in ref. 
[4]. 

While any numerical integration scheme encounters 
numerical difficulties, as either N or Le becomes extremely 
small or large, the present integral treatment, as will be shown 
shortly, is free from such difficulties associated with the 
physical limiting cond:[tions. 

RESULTS AND DISCUSSION 

In Table 1, the heat and mass transfer results generated 
by the present approximate formulae, equations (19a) and 
(19b), are compared with those of  the exact solution fur- 
nished by Bejan and Khair [2]. Fairly good agreement can 
be seen between the approximate and exact solutions for an 
entire range, and, hence, the present approximate formulae 
may well suffice for fast and accurate estimation of heat and 
mass transfer rates. The boundary layer thickness ratio ( 
[defined by equation (10d)] is plotted in Fig. 2 in terms of  its 
reciprocal, following Bejan and Khair [2]. For the case of  
N = 0, a simple dosed form expression for ~ can be obtained 
from the algebraic equation (15) as 

(1 + S L e )  1/2 -I- 1 
NuJShx = 1/~ 4Le fo rN = 0. (21) 

It is also interesting to note that the cubic equation (15) 
yields ( = 1 for Le = 1 such that our approximate formulae 
reduce to 

Table 1. Local Nusselt and Sherwood numbers 

Nux/Ralx/2 Shx/Ra~/2 
N Le Exact Present Exact Present 

4 1 0.992 0.993 0.992 0.993 
2 0.899 0.896 1.431 1.436 
4 0.798 0.797 2.055 2.072 
6 0.742 0.743 2.533 2.562 
8 0.707 0,707 2.936 2.976 

10 0.681 0.681 3.290 3.341 
100 0.521 0.519 10.521 10.792 

1 1 0.628 0.628 0.628 0.628 
2 0.593 0.591 0.930 0.937 
4 0.559 0.557 1.358 1.383 
6 0.541 0.539 1.685 1.728 
8 0.529 0.528 1.960 2.019 

10 0.521 0.520 2.202 2.276 
100 0.470 0.469 7.139 7.539 

0 1 0.444 0.444 0.444 0.444 
2 0.444 0.444 0.683 0.693 
4 0.444 0.444 1.019 1.053 
6 0.444 0.444 1.275 1.332 
8 0.444 0.444 1.491 1.568 

10 0.444 0.444 1.680 1.776 
100 0.444 0.444 5.544 6.061 

1 

II 

0.04 

l~a~t solution 

10 100 
Le 

Fig. 2. Boundary layer thickness ratio. 
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NuxlRal] z = ShxlRa 112 = 0.444(1+N) I/2 forLe = 1. 

(22) 

The effects of  Le and N on the heat and mass  transfer rates 
are shown in Figs. 3 and 4, following Lai and Kulacki [7] for 
a wide range of  Le. Again, excellent agreement is confirmed 
between the present approximate solution and the exact solu- 
tion of  Lai and Kulacki. 

A careful examination of  the cubic equation (15) reveals 
that there are three distinct asymptotic cases depending on 
which two terms (out of  the four terms) in equation (15) are 
predominant.  Thus,  the following asymptotic results for if, 
depending on the values of  N and Le : 

(1 +2N)  ~ 
~ = { ( 2 + N ) L e }  ~iz for Le>> 2 + ~ N -  (23a) 

which is the case where the first and third terms are pre- 
dominant  ; 

( N L e  ~1/2 N(1 + 2 ~  (23b) 
= \ I + 2 N ]  for Le<< ( 2 + N )  2 

which is the case where the second and fourth terms are 
predominant  ; and 

2 + N  ( +2N)  (1 +2N)  2 
= l ~ L e  for N-1 << Le << (23c) 

( 2 + N )  z 2 + N  

which is the case where the second and third terms are pre- 
dominant.  

These asymptotic results are illustrated in Fig. 5, using a 
log N-log Le plane. The curves dividing the regimes may 
well be approximated by the two straight lines for Le = 1 
and Le = N. 

et 

0.1 

1 0 -  
Present solution 

. . . .  Lai and Kulacki (1991)  

I I I 
1 I0 I00 

Le 

Fig. 3, Heat  transfer results. 
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The foregoing results, when substituted into equations 
(19a) and (19b), yield various asymptotic expressions for 
Nux and Shx, depending on the N and Le values, as follows : 

Asymptotic results for heat transfer : 

Regime I (N << 1 or Le >> N) : Nux = 0.444Ra~] 2 (24a) 

Regime II (1 << Le << N):  Nux = 0.888(Rax NILe) li2 

(24b) 

Regime III (N >> 1 and Le << 1) : Nux = 0.628(RG N) ~n. 

(24c) 

Asymptotic results for mass  transfer : 

Regimel(N>> l o r L e < < N ) :  Sh~=O.444(Ra~NLe)  I/2 

(25a) 

Regime II (N << Le << 1) : Shx = 0.888Le Ra~/2 

(25b) 

RegimeIII(N<< l andLe>>  1): Shx = 0 . 6 2 8 ( R G L e )  ~lz. 

(25c) 

Thus,  we should bear in mind that the line dividing the 
regimes I and II is the Le = N line rather than  the N = 1 
line, as implied in scaling arguments  by Bejan [3] and Bejan 
and Khair  [2]. Let us consider the regime 1 << N << Le in the 
heat transfer map (Fig. 6). In this regime, the flow in the 
vicinity of  the wall is driven essentially by mass  transfer, 
since 1 << N. Yet, the pure heat transfer formula (24a) 
remains valid in this regime, because the the concentration 
boundary layer thickness is so thin that the heat transfer rate 
is virtually unaffected by mass transfer. A similar con- 
sideration can be made for the regime Le << N << 1 in the 
mass transfer map  (Fig. 7), arriving at another paradoxical 
conclusion that  the pure mass  transfer formula (25a) holds 
even when the flow close to the wall is driven by heat transfer. 
These paradoxical conclusions, which have been overlooked 
in the previous scale analyses [2, 3], can be appreciated as we 
re-examine the Nux/Ra]] 2 curves shown in Fig. 3, with ref- 
erence to the heat transfer regime map (Fig. 6). As we 
increase Le along a constant  N line with N fixed at some 
value greater than  unity (say N = 8) in the heat transfer 

T '°° 

2 "  
I ' 

6 N 

< (N,.o 

- O.Ol 

I 
IOO 

Fig. 4. Mass  transfer results. Fig. 5. Regime map  for boundary layer thickness ratio. 
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S~, ffi 0.444R~/2 

I I I 
10-3 10-2 10-1 

10-1 

I0-2 

10-3 

1o 2 

/ /  / S moa 

I I I 
10 102 103 

Regime 

Nu~ = 0.62S(Ra~ N)~/2 

Fig. 6. Regime map for heat transfer. 
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Sh x = 0.444(Ra x N Le) 1/2 

Fig. 7. Regime map for mass transfer. 

regime map, we proceed from the regime III, through II and 
then to I, whereas we stay within the regime I when N is 
sufficiently lower than unity. Note that the Nu~/Ra~/2 curves 
in Fig. 3 change their slopes correspondingly as we increase 
Le. A similar observation can be made for the mass transfer 
regime map. 

An integral treatment, such as the present one, remains a 
powerful means to attack boundary layer problems, since 
it naturally captures correct asymptotic behaviors, whereas 
scale arguments are not completely free from a danger of  
misinterpretation. 
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